Root Cortical Aerenchyma Enhances Nitrogen Acquisition from Low-Nitrogen Soils in Maize1[W][OPEN]
نویسندگان
چکیده
Suboptimal nitrogen (N) availability is a primary constraint for crop production in developing nations, while in rich nations, intensive N fertilization carries substantial environmental and economic costs. Therefore, understanding root phenes that enhance N acquisition is of considerable importance. Structural-functional modeling predicts that root cortical aerenchyma (RCA) could improve N acquisition in maize (Zea mays). We evaluated the utility of RCA for N acquisition by physiological comparison of maize recombinant inbred lines contrasting in RCA grown under suboptimal and adequate N availability in greenhouse mesocosms and in the field in the United States and South Africa. N stress increased RCA formation by 200% in mesocosms and by 90% to 100% in the field. RCA formation substantially reduced root respiration and root N content. Under low-N conditions, RCA formation increased rooting depth by 15% to 31%, increased leaf N content by 28% to 81%, increased leaf chlorophyll content by 22%, increased leaf CO2 assimilation by 22%, increased vegetative biomass by 31% to 66%, and increased grain yield by 58%. Our results are consistent with the hypothesis that RCA improves plant growth under N-limiting conditions by decreasing root metabolic costs, thereby enhancing soil exploration and N acquisition in deep soil strata. Although potential fitness tradeoffs of RCA formation are poorly understood, increased RCA formation appears be a promising breeding target for enhancing crop N acquisition.
منابع مشابه
Root cortical aerenchyma enhances the growth of maize on soils with suboptimal availability of nitrogen, phosphorus, and potassium.
Root cortical aerenchyma (RCA) is induced by hypoxia, drought, and several nutrient deficiencies. Previous research showed that RCA formation reduces the respiration and nutrient content of root tissue. We used SimRoot, a functional-structural model, to provide quantitative support for the hypothesis that RCA formation is a useful adaptation to suboptimal availability of phosphorus, nitrogen, a...
متن کاملRoot cortical aerenchyma enhances nitrogen acquisition from low-nitrogen soils in maize.
Suboptimal nitrogen (N) availability is a primary constraint for crop production in developing nations, while in rich nations, intensive N fertilization carries substantial environmental and economic costs. Therefore, understanding root phenes that enhance N acquisition is of considerable importance. Structural-functional modeling predicts that root cortical aerenchyma (RCA) could improve N acq...
متن کاملRoot aeration improves growth and nitrogen accumulation in rice seedlings under low nitrogen
In wetland soils, changes in oxygen (O2) level in the rhizosphere are believed to influence the behaviour of nutrients and their usage by plants. However, the effect of aeration on nitrogen (N) acquisition under different N supply conditions remains largely unknown. In this study, the rice cultivars Yangdao 6 (YD6, with higher root aerenchyma abundance) and Nongken 57 (NK57, with lower root aer...
متن کاملLow crown root number enhances nitrogen acquisition from low-nitrogen soils in maize.
In developing nations, low soil nitrogen (N) availability is a primary limitation to crop production and food security, while in rich nations, intensive N fertilization is a primary economic, energy, and environmental cost to crop production. It has been proposed that genetic variation for root architectural and anatomical traits enhancing the exploitation of deep soil strata could be deployed ...
متن کاملPlant Nitrogen Acquisition Under Low Availability: Regulation of Uptake and Root Architecture
Nitrogen availability is a major factor determining plant growth and productivity. Plants acquire nitrogen nutrients from the soil through their roots mostly in the form of ammonium and nitrate. Since these nutrients are scarce in natural soils, plants have evolved adaptive responses to cope with the environment. One of the most important responses is the regulation of nitrogen acquisition effi...
متن کامل